Two Moore manifolds

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Lorentzian two-Symmetric Manifolds of Dimension-fou‎r

‎We study curvature properties of four-dimensional Lorentzian manifolds with two-symmetry property‎. ‎We then consider Einstein-like metrics‎, ‎Ricci solitons and homogeneity over these spaces‎‎.

متن کامل

Manifolds of Cohomogeneity Two

First, a word from our sponsor (particle physics). The mathematical reader should not expect to understand the physics, but (paraphrasing A. N. Varchenko) just let the words wash over you like music. Acharya & Witten [1] and Atiyah & Witten [2] have demonstrated that singularities in G2 holonomy manifolds 1 can compactify M -theory yielding effective quantum field theories in 3+1 dimensional Mi...

متن کامل

On Mixed Almost Moore Graphs of Diameter Two

Mixed almost Moore graphs appear in the context of the Degree/Diameter problem as a class of extremal mixed graphs, in the sense that their order is one less than the Moore bound for mixed graphs. The problem of their existence has been considered before for directed graphs and undirected ones, but not for the mixed case, which is a kind of generalization. In this paper we give some necessary c...

متن کامل

Inertial Manifolds and Gevrey Regularity for the Moore-Greitzer Model of an Axial-Flow Compressor

In this paper, we study the regularity and long-time behavior of the solutions to the Moore-Greitzer model of an axial-flow compressor. In particular, we prove that this dissipative system of evolution equations possesses a global invariant inertial manifold, and therefore its underlying long-time dynamics reduces to that of an ordinary differential system. Furthermore, we show that the solutio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology and its Applications

سال: 1993

ISSN: 0166-8641

DOI: 10.1016/0166-8641(93)90012-3